Posts By :

John

3.4 Dowell and Long (1989) – HCI Engineering Knowledge – Short Version 150 150 John

3.4 Dowell and Long (1989) – HCI Engineering Knowledge – Short Version

Towards a Conception for an Engineering Discipline of Human Factors

Short version

John Dowell and John Long

Ergonomics Unit, University College London, 

26, Bedford Way, London. WC1H 0AP. 

Abstract  ……… The paper is in two parts. Part I examines the potential for Human Factors to formulate engineering principles. …….. A conception would provide the set of related concepts which both expressed the general design problem more formally, and which might be embodied in engineering principles.

In P. Barber and J. Laws (ed.s) Special Issue on Cognitive Ergonomics, Ergonomics, 1989, vol. 32, no. 11, pp. 1613-1536.

Part I. Requirement for Human Factors as an Engineering Discipline of Human-Computer Interaction

1.1 Introduction;

1.2 Characterization of the human factors discipline;

1.3 State of the human factors art;

1.4 Human factors engineering;

1.5 The requirement for an engineering conception of human factors.

 

1.1 Introduction

Assessment of contemporary HF (Section 1.3.) concludes that its practices are predominantly those of a craft. Shortcomings of those practices are exposed which indict the absence of support from appropriate formal discipline knowledge. This absence prompts the question as to what might be the formal knowledge which HF could develop, and what might be the process of its formulation. By comparing the HF general design problem with other, better understood, general design problems, and by identifying the formal knowledge possessed by the corresponding disciplines, the potential for HF engineering principles is suggested (Section 1.4.).

However, a pre-requisite for the formulation of any engineering principle is a conception. A conception is a unitary (and consensus) view of a general design problem; its power lies in the coherence and completeness of its definition of the concepts which can express that problem. Engineering principles are articulated in terms of those concepts. Hence, the requirement for a conception for the HF discipline is concluded (Section 1.5.).

 

1.2. Characterisation of the Human Factors Discipline

Most definitions of disciplines assume three primary characteristics: a general problem; practices, providing solutions to that problem; and knowledge, supporting those practices.

 

1.3. State of the Human Factors Art

It would be difficult to reject the claim that the contemporary HF discipline has the character of a craft …….. Characteristic of a craft, the execution and success of its practices in systems development depends principally on the expertise, guided intuition and accumulated experience which the practitioner brings to bear on the design problem.

……..

The dogma of HF as necessarily a craft whose knowledge may only be the accrued experience of its practitioners, is nowhere presented rationally.

……Third, HF practices are inefficient. Each development of a system requires the solving of new problems by implementation then testing. There is no formal structure within which experience accumulated in the successful development of previous systems can be recruited to support solutions to the new problems, except through the memory and intuitions of the designer. These may not be shared by others, except indirectly (for example, through the formulation of heuristics), and so experience may be lost and may have to be re-acquired (Long and Dowell, 1989).

The guidance may be direct – by the designer’s familiarity with psychological theory and practice, or may be indirect by means of guidelines derived from psychological findings. In both cases, the guidance can offer only advice, which must be implemented then tested to assess its effectiveness. Since the general scientific problem is the explanation and prediction of phenomena, and not the design of artifacts, the guidance cannot be directly embodied in design specifications which offer a guarantee with respect to the effectiveness of the implemented design.

…….. These four deficiencies are endemic to the craft nature of contemporary HF practice. They indict the tacit HF discipline knowledge consisting of accumulated experience embodied in procedures, even where that experience has been influenced by guidance offered by the science of psychology .Because the knowledge is tacit (i.e., implicit or informal), it cannot be operationalised, and hence the role of HF in systems development cannot be planned as would be necessary for the proper integration of the knowledge. Without being operationalised, its knowledge cannot be tested, and so the efficacy of the practices it supports cannot be guaranteed. Without being tested, its knowledge cannot be generalised for new applications and so the practices it can support will be inefficient. Without being operationalised, testable, and general, the knowledge cannot be developed in any structured way as required for supporting the systematic and intentional progress of the HF discipline.

It would be incorrect to assume the current absence of formality of HF knowledge to be a necessary response to the indeterminism of human behaviour………. The extent to which human behaviour is deterministic for the purposes of designing interactive computer-based systems needs to be independently established. Only then might it be known if HF discipline knowledge could be formal.

1.4. Human Factors Engineering Principles

HF has been viewed earlier (Section 1.2.) as comparable to other disciplines which address general design problems: for example, Civil Engineering and Health Administration. The nature of the formal knowledge of a future HF discipline might, then, be suggested by examining such disciplines. The general design problems of different disciplines, however, must first be related to their characteristic practices, in order to relate the knowledge supporting those practices.

……..

there exists no pre-ordained relationship between the formality of a discipline’s knowledge and the hardness of its general design problem. In particular, the practices of a (craft) discipline supported by experience – that is, by informal knowledge – may address a hard problem. But also, within the boundary of determinism, that discipline could acquire formal knowledge to support specification as a design practice.

…….. Generally, the established engineering disciplines possess formal knowledge: a corpus of operationalised, tested, and generalised principles. Those principles are prescriptive, enabling the complete specification of design solutions before those designs are implemented (see Dowell and Long, 1988b). This theme of prescription in design is central to the thesis offered here.

Engineering principles can be substantive or methodological (see Checkland, 1981; Pirsig, 1974). Methodological Principles prescribe the methods for solving a general design problem optimally. For example, methodological principles might prescribe the representations of designs specified at a general level of description and procedures for systematically decomposing those representations until complete specification is possible at a level of description of immediate design implementation (Hubka, Andreason and Eder, 1988). Methodological principles would assure each lower level of specification as being a complete representation of an immediately higher level.

Substantive Principles prescribe the features and properties of artefacts, or systems that will constitute an optimal solution to a general design problem. As a simple example, a substantive principle deriving from Kirchoff’s Laws might be one which would specify the physical structure of a network design (sources, resistances and their nodes etc) whose behaviour (e.g., distribution of current) would constitute an optimal solution to a design problem concerning an amplifier’s power supply.

 

1.5. The Requirement for an Engineering Conception for Human Factors

The contemporary HF discipline does not possess either methodological or substantive engineering principles. The heuristics it possesses are either ‘rules of thumb’ derived from experience or guidelines derived from psychological theories and findings. Neither guidelines nor rules of thumb offer assurance of their efficacy in any given instance, and particularly with regard to the effectiveness of a design. The methods and models of HF (as opposed to methodological and substantive principles) are similarly without such an assurance. Clearly, any evolution of HF as an engineering discipline in the manner proposed here has yet to begin. There is an immediate need then, for a view of how it might begin, and how formulation of engineering principles might be precipitated.

……..Such a conception is a unitary (and consensus) view of the general design problem of a discipline. Its power lies in the coherence and completeness of its definition of concepts which express that problem. Hence, it enables the formulation of engineering principles which embody and instantiate those concepts. A conception (like a paradigm) is always open to rejection and replacement.

…….. It is inconceiveable that a formulation of HF engineering principles might occur whilst there is no consensus understanding of the concepts which they would embody. Articulation of a conception must then be a pre-requisite for formulation of engineering principles for HF.

Part II. Conception for an Engineering Discipline of Human Factors 

2.1 Conception of the human factors general design problem;

2.2 Conception of work and user; 2.2.1 Objects and their attributes; 2.2.2 Attributes and levels of complexity; 2.2.3 Relations between attributes; 2.2.4 Attribute states and affordance; 2.2.5 Organisations, domains (of application)2.2.6 Goals; 2.2.7 Quality; 2.2.8 Work and the user; and the requirement for attribute state changes;

2.3 Conception of the interactive worksystem and the user; 2.3.1 Interactive worksystems; 2.3.2 The user as a system of mental and physical human behaviours; 2.3.3 Human-computer interaction; 2.3.4 On-line and off-line behaviours; 2.3.5 Human structures and the user; 2.3.6 Resource costs and the user;

2.4 Conception of performance of the interactive worksystem and the user;

2.5 Conclusions and the prospect for Human Factors engineering principles

2.5. Conclusions and the Prospect for Human Factors Engineering Principles

…….. The extent to which HF engineering principles might be realiseable in practice remains to be seen. It is not supposed that the development of effective systems will never require craft skills in some form, and engineering principles are not seen to be incompatible with craft knowledge, particularly with respect to their instantiation (Long and Dowell, 1989). At a minimum, engineering principles might be expected to augment the craft knowledge of HF professionals. Yet the great potential of HF engineering principles for the effectiveness of the discipline demands serious consideration. References Ashby W. Ross, (1956), An Introduction to Cybernetics. London: Methuen.

Bornat R. and Thimbleby H., (1989), The Life and Times of ded, Text Display Editor. In J.B. Long and A.D. Whitefield (ed.s), Cognitive Ergonomics and Human Computer Interaction. Cambridge: Cambridge University Press.

Card, S. K., Moran, T., and Newell, A., (1983), The Psychology of Human Computer Interaction, New Jersey: Lawrence Erlbaum Associates.

Carey, T., (1989), Position Paper: The Basic HCI Course For Software Engineers. SIGCHI Bulletin, Vol. 20, no. 3.

Carroll J.M., and Campbell R. L., (1986), Softening up Hard Science: Reply to Newell and Card. Human Computer Interaction, Vol. 2, pp. 227-249.

Checkland P., (1981), Systems Thinking, Systems Practice. Chichester: John Wiley and Sons.

Cooley M.J.E., (1980), Architect or Bee? The Human/Technology Relationship. Slough: Langley Technical Services.

Didner R.S. A Value Added Approach to Systems Design. Human Factors Society Bulletin, May 1988. Dowell J., and

Long J. B., (1988a), Human-Computer Interaction Engineering. In N. Heaton and M . Sinclair (ed.s), Designing End-User Interfaces. A State of the Art Report. 15:8. Oxford: Pergamon Infotech.

Dowell, J., and Long, J. B., 1988b, A Framework for the Specification of Collaborative Research in Human Computer Interaction, in UK IT 88 Conference Publication 1988, pub. IEE and BCS.

Gibson J.J., (1977), The Theory of Affordances. In R.E. Shaw and J. Branford (ed.s), Perceiving, Acting and Knowing. New Jersey: Erlbaum.

Gries D., (1981), The Science of Programming, New York: Springer Verlag.

Hubka V., Andreason M.M. and Eder W.E., (1988), Practical Studies in Systematic Design, London: Butterworths.

Long J.B., Hammond N., Barnard P. and Morton J., (1983), Introducing the Interactive Computer at Work: the Users’ Views. Behaviour And Information Technology, 2, pp. 39-106.

Long, J., (1987), Cognitive Ergonomics and Human Computer Interaction. In P. Warr (ed.), Psychology at Work. England: Penguin.

Long J.B., (1989), Cognitive Ergonomics and Human Computer Interaction: an Introduction. In J.B. Long and A.D. Whitefield (ed.s), Cognitive Ergonomics and Human Computer Interaction. Cambridge: Cambridge University Press.

Long J.B. and Dowell J., (1989), Conceptions of the Discipline of HCI: Craft, Applied Science, and Engineering. In Sutcliffe A. and Macaulay L., Proceedings of the Fifth Conference of the BCS HCI SG. Cambridge: Cambridge University Press.

Marr D., (1982), Vision. New York: Wh Freeman and Co. Morgan D.G.,

Shorter D.N. and Tainsh M., (1988), Systems Engineering. Improved Design and Construction of Complex IT systems. Available from IED, Kingsgate House, 66-74 Victoria Street, London, SW1.

Norman D.A. and Draper S.W. (eds) (1986): User Centred System Design. Hillsdale, New Jersey: Lawrence Erlbaum;

Pirsig R., 1974, Zen and the Art of Motorcycle Maintenance. London: Bodley Head.

Rouse W. B., (1980), Systems Engineering Models of Human Machine Interaction. New York: Elsevier North Holland.

Shneiderman B. (1980): Software Psychology: Human Factors in Computer and Information Systems. Cambridge, Mass.: Winthrop.

Thimbleby H., (1984), Generative User Engineering Principles for User Interface Design. In B. Shackel (ed.), Proceedings of the First IFIP conference on Human-Computer Interaction. Human-Computer Interaction – INTERACT’84. Amsterdam: Elsevier Science. Vol.2, pp. 102-107.

van Gisch J. P. and Pipino L.L., (1986), In Search of a Paradigm for the Discipline of Information Systems, Future Computing Systems, 1 (1), pp. 71-89.

Walsh P., Lim K.Y., Long J.B., and Carver M.K., (1988), Integrating Human Factors with System Development. In: N. Heaton and M. Sinclair (eds): Designing End-User Interfaces. Oxford: Pergamon Infotech.

Wilden A., 1980, System and Structure; Second Edition. London: Tavistock Publications.

This paper has greatly benefited from discussion with others and from their criticisms. We would like to thank our collegues at the Ergonomics Unit, University College London and in particular, Andy Whitefield, Andrew Life and Martin Colbert. We would also like to thank the editors of the special issue for their support and two anonymous referees for their helpful comments. Any remaining infelicities – of specification and implementation – are our own

3.1 General Conception of HCI Design Knowledge 150 150 John

3.1 General Conception of HCI Design Knowledge

The HCI Design Knowledge Conception pre-supposes an associated HCI Discipline having three primary characteristics: a general problem; practices, providing solutions to that problem; and knowledge supporting those practices. (C5) The general HCI problem is: to design people’s use of computers to do something as wanted. (F1) The HCI Conception, then, is unequivocally one of knowledge and its support for design. (C1)

HCI design knowledge is the product of research and practice, both of which solve HCI design problems. (F2) (C2) Such knowledge may be private or public, formal or informal. It may assume a number of forms, for example, codified; experienced; proceeduralised; demonstrated; exemplified as in skills; theories; guidelines; heuristics; rules-of-thumb; principles; hints-and-tips etc.  (C3)(C4) HCI design knowledge may be maintained in a number of ways: for example, it may be expressed in journals; example solutions to design problems; learning systems; communities; good practice; procedures; word-of-mouth; tools etc.  HCI knowledge is, therefore, a necessary characteristic of the HCI discipline, its practices and its design problem. (F3)

This wide range of HCI design knowledge is matched by an equally wide range of HCI design practices seeking, specifying and implementing solutions to the HCI design problem. Such design practices include: ‘specify-then- implement’ (specification precedes implementation); ‘specify-and-implement’ (specification and implementation proceed together); ‘implement-and-test’ (implementation occurs without specification, as in ‘trial and error’ and ‘implement and iterate’). In addition, all of these practices may include iteration and test in a variety of different ways. (F4) (C6) (C7)

Key concepts are shown in bold on their first appearance only.

Footnotes and Citations

Footnotes

(F1) This definition encapsulates the basic characteristics of HCI: 1. that people not only use computers; but use them to do something (whatever that something may be); 2. That people not only use computers to do something; but to do something what and how they want.

(F2) HCI research solves design problems to acquire and to validate HCI design knowledge. HCI practice solves design problems to satisfy user and client requirements.

(F3) Some semblance of order can be brought to this plethora of types of design knowledge by supposing different approaches to establishing a discipline of HCI, for example: Craft; Applied Science; and Engineering (Long and Dowell, 1989).

(F4) Some semblance of order can be brought to this plethora of types of design practice by supposing different approaches to establishing a discipline of HCI, for example: Craft; Applied Science; and Engineering (Long and Dowell, 1989). See also F3 above.

Citations

Long and Dowell (1989)

(C1) ‘Second, the scope of the general problem of HCI is defined by reference to humans, computers, and the work they perform.’ (Page 9, Abstract, Lines 7-9) (

C2) ‘The framework expresses the essential characteristics of the HCI discipline, and can be summarised as: ‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’. (Page 9, Lines 16-19)

(C3) ‘…….. Some would claim HCI theory as explanatory laws, others as design principles. Some would claim HCI theory as directly supporting HCI practice, others as indirectly providing support. Some would claim HCI theory as effectively supporting HCI practice, whilst others may claim such support as non-existent.’ (Page 10, Lines 12-17)

(C4) ‘All definitions of disciplines make reference to discipline knowledge as the product of research or more generally of a field of study. Knowledge can be public (ultimately formal) or private (ultimately experiential). It may assume a number of forms; for example, it may be tacit, formal, experiential, codified – as in theories, laws and principles etc. It may also be maintained in a number of ways; for example, it may be expressed in journals, or learning systems, or it may only be embodied in procedures and tools. All disciplines would appear to have knowledge as a component (for example, scientific discipline knowledge, engineering discipline knowledge, medical discipline knowledge, etc). Knowledge, therefore, is a necessary characteristic of a discipline.’ (Page 11, Lines 30-38)

Dowell and Long (1989)

(C5) ‘Most definitions of disciplines assume three primary characteristics: a general problem; practices, providing solutions to that problem; and knowledge, supporting those practices.’ (Page 1514, Lines 43-45)

(C6) ‘These four deficiencies are endemic to the craft nature of contemporary HF practice. They indict the tacit HF discipline knowledge consisting of accumulated experience embodied in procedures, even where that experience has been influenced by guidance offered by the science of psychology. Because the knowledge is tacit (i.e., implicit or informal), it cannot be operationalised, and hence the role of HF in systems development cannot be planned as would be necessary for the proper integration of the knowledge. Without being operationalised, its knowledge cannot be tested, and so the efficacy of the practices it supports cannot be guaranteed. Without being tested, its knowledge cannot be generalised for new applications and so the practices it can support will be inefficient. Without being operationalised, testable, and general, the knowledge cannot be developed in any structured way’ (Page 1517, Lines 3-13)

(C7) ‘The contemporary HF discipline does not possess either methodological or substantive engineering principles. The heuristics it possesses are either ‘rules of thumb’ derived from experience or guidelines derived from psychological theories and findings. Neither guidelines nor rules of thumb offer assurance of their efficacy in any given instance, and particularly with regard to the effectiveness of a design. The methods and models of HF (as opposed to methodological and substantive principles) are similarly without such an assurance. (Page 1520, Lines 21-28)

3.2 General Conception of HCI Engineering Design Knowledge 150 150 John

3.2 General Conception of HCI Engineering Design Knowledge

The General Conception pre-supposes an associated HCI Engineering Discipline (F1) comprising: HCI Engineering knowledge, which distinguishes the interactive system of user and computer, the tasks it performs as desired and the goodness of that performance in terms of specific criteria (C1) The knowledge supports HCI Engineering practices seeking to solve design problems. Design problems here include specification, followed by implementation, of users interacting with computers (the interactive system) to perform tasks as desired in some domain of application. (C3)

The HCI Engineering Conception, then, is unequivocally one of design knowledge. (F2) HCI Engineering knowledge is the product of research. Such knowledge is public and ultimately formal. (F3) It may assume a number of forms, for example, codified, proceduralised, formal etc, as in theories, principles etc. It may be maintained in a number of ways; for example, it may be expressed in journals, learning systems, procedures, tools etc. HCI Engineering knowledge is, therefore, a necessary characteristic of the HCI Engineering Discipline. (C2)

The discipline of HCI Engineering, aims (in the longer term) to solve its general problem of design by the specification of designs before their implementation – as in ‘specify then implement’ design practices. (C6) (C7) (C9) The latter is made possible by the prescriptive nature of the knowledge supporting such practices – knowledge formulated as HCI Engineering principles. (C4) However, a pre-requisite for the formulation of any HCI Engineering principles is a Conception. The EU Conception, from which the HCI Engineering Conception is generalised, is a unitary view of the HCI Engineering design problem; its power lies in the coherence and completeness of its definition of the concepts, which can express that problem. (F4) (C8) (C12)

Engineering principles are articulated in terms of those self-same concepts. The latter include: user; computer; interaction; task; domain of application; system; and performance (for a full listing – see 2.2). Thus, the Conception of HCI Engineering principles assumes the possibility of a codified, general, and testable formulation of HCI Engineering discipline knowledge. The latter might be prescriptively applied to designing humans and computers interacting to perform tasks as desired. Such principles would be unequivocally formal and operational. Indeed, their operational capability would derive directly from the formality of their concepts. (C4) HCI Engineering concepts would be generalisable over classes of design problem solutions. Since the principles are operational, their application (expressed as design solutions) would necessarily be specifiable. They would also be testable and so their reliability and generality could also be specified. (C5)

In this way would the principles, expressed in terms of the Conception of Engineering design knowledge, be validated. Such validated Engineering design principles would offer a better guarantee (that is, more assurance – see 3.6.1)) of solving the HCI general design problem. Better, for example, than the experiential trial-and-error knowledge of craft HCI or the guidelines/heuristics of Applied Science HCI. (C11) HCI Engineering principles, following the Conception of Engineering design knowledge, can be substantive or methodological. Methodological principles prescribe the methods for solving the general HCI design problem. Methodological principles would assure complete specification of all necessary levels of design solution representation. Substantive principles prescribe the features and properties of HCI systems that constitute solutions to the HCI Engineering design problem. (C10)

The extent, to which HCI engineering principles might be realiseable in practice, in the longer term, remains to be seen and demonstrated. In the meantime, craft knowledge (F5) in whatever form – models, methods, heuristics, guidelines, experience, procedures etc cannot be other than recruited to solve HCI design problems both by researchers and practitioners. (C13)

Key concepts are shown in bold on their first appearance only.

Footnotes and Citations

Footnotes

(F1) The contrast here with Engineering is Science, which has its own discipline problem, knowledge and practices.

(F2) See (F1)

(F3) For the present purposes, Engineering, in its early craft stages, is not addressed.

(F4) Other HCI Engineering conceptions, other than that of the EU, might, of course, also be postulated.

(F5) See (F3)

Citations

Long and Dowell (1989)

(C1) ‘The framework expresses the essential characteristics of the HCI discipline, and can be summarised as: ‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’. (Page 9, Lines 16-19)

(C2) ‘All definitions of disciplines make reference to discipline knowledge as the product of research or more generally of a field of study. Knowledge can be public (ultimately formal) or private (ultimately experiential). It may assume a number of forms; for example, it may be tacit, formal, experiential, codified – as in theories, laws and principles etc. It may also be maintained in a number of ways; for example, it may be expressed in journals, or learning systems, or it may only be embodied in procedures and tools. All disciplines would appear to have knowledge as a component (for example, scientific discipline knowledge, engineering discipline knowledge, medical discipline knowledge, etc). Knowledge, therefore, is a necessary characteristic of a discipline.’ (Page 11, Lines 30-38)

(C3) ‘The discipline of engineering may characteristically solve its general problem (of design) by the specification of designs before their implementation. It is able to do so because of the prescriptive nature of its discipline knowledge supporting those practices – knowledge formulated as engineering principles.’ (Page 24, Lines 11-14)

(C4) ‘The conception of HCI engineering principles assumes the possibility of a codified, general and testable formulation of HCI discipline knowledge which might be prescriptively applied to designing humans and computers interacting to perform work effectively. Such principles would be unequivocally formal and operational. Indeed their operational capability would derive directly from their formality, including the formality of their concepts.’ (Page 24, Lines 28-31)

(C5) ‘First, HCI engineering principles would be a generaliseable knowledge. …….. Second, engineering HCI principles would be operational, and so their application would be specifiable…….. Because they would be operational, they would be testable and their reliability and generality could be specified.’ (Page 27, Lines 20-22 and 36-28)

Dowell and Long (1989)

(C6) ‘The paper .….. examines the potential for Human Factors to formulate engineering principles. ……… A conception would provide the set of related concepts which both expressed the general design problem more formally, and which might be embodied in engineering principles.’ (Page 1513, Lines 9 and 10)

(C7) By comparing the HF general design problem with other, better-understood, general design problems, and by identifying the formal knowledge possessed by the corresponding disciplines, the potential for HF engineering principles is suggested.’ (Page 1514, Lines 15-18).

(C8) ‘However, a pre-requisite for the formulation of any engineering principle is a conception. A conception is a unitary (and consensus) view of a general design problem; its power lies in the coherence and completeness of its definition of the concepts, which can express that problem. Engineering principles are articulated in terms of those concepts.’ (Page 1514, Lines 23-27)

(C9) ‘Generally, the established engineering disciplines possess formal knowledge: a corpus of operationalised, tested, and generalised principles. Those principles are prescriptive, enabling the complete specification of design solutions before those designs are implemented (see Dowell and Long, 1988b).’ (Page 1520, Lines 1-5)

(C10) ‘Engineering principles can be substantive or methodological. Methodological Principles prescribe the methods for solving a general design problem optimally. ……Methodological principles would assure each lower level of specification as being a complete representation of an immediately higher level. Substantive Principles prescribe the features and properties of artefacts, or systems that will constitute an optimal solution to a general design problem. (Page 1520, Lines 6-15)

(C11) ‘The contemporary HF discipline does not possess either methodological or substantive engineering principles. The heuristics it possesses are either ‘rules of thumb’ derived from experience or guidelines derived from psychological theories and findings. Neither guidelines nor rules of thumb offer assurance of their efficacy in any given instance, and particularly with regard to the effectiveness of a design. The methods and models of HF (as opposed to methodological and substantive principles) are similarly without such an assurance. (Page 1520, Lines 21-28)

(C12) ‘Such a conception ….. enables the formulation of engineering principles which embody and instantiate those concepts.( Page 1520, Line 1)

(C13) ‘The extent to which HF engineering principles might be realiseable in practice remains to be seen. It is not supposed that the development of effective systems will never require craft skills in some form, and engineering principles are not seen to be incompatible with craft knowledge, particularly with respect to their instantiation. At a minimum, engineering principles might be expected to augment the craft knowledge of HF professionals. Yet the great potential of HF engineering principles for the effectiveness of the discipline demands serious consideration.’ (Page 1533, Lines 24-29)

3.3 HCI/E(U) Conception of HCI Engineering Design Knowledge 150 150 John

3.3 HCI/E(U) Conception of HCI Engineering Design Knowledge

The HCI/E(U) Conception of HCI Engineering Design Knowledge presupposes an associated HCI Engineering Discipline, comprising: HCI engineering knowledge, which distinguishes the interactive system of user and computer, the work it performs and the effectiveness of that performance, in terms of task quality and system resource costs. This HCI design knowledge supports HCI practices seeking to diagnose design problems and to prescribe design solutions to those problems. (C18)

The EU Conception of the HCI Engineering design problem is informally expressed as: to design human interactions with computers for effective working. The EU Conception, then, is unequivocally one of design knowledge. HCI Engineering knowledge, following the EU Conception, is the product of research. Such knowledge is public and ultimately formal. It may assume a number of forms, for example, codified, proceduralised, formal etc, as in theories, principles etc. It may be maintained in a number of ways, for example, it may be expressed in journals, learning systems, procedures, tools etc. HCI Engineering knowledge is, therefore, a necessary characteristic of the EU HCI Engineering Discipline. (C3)

The discipline of HCI Engineering, aims, following the EU Conception, (in the longer term (F1)) to solve its general problem of design by the specification of designs before their implementation – as in ‘specify then implement’ design practices. (C12) (C19) The latter is made possible by the prescriptive nature of the knowledge supporting such practices – knowledge formulated as HCI Engineering principles. (C21)

However, a pre-requisite for the formulation of any HCI Engineering principles is a Conception. The EU Conception is a unitary view of the HCI Engineering design problem; its power lies in the coherence and completeness of its definition of the concepts, which can express that problem. (C17) Engineering principles are articulated in terms of those self-same concepts. The latter include: user; computer; interaction; work; work domain; worksystem; effectiveness; performance; task quality; system resource costs etc (see 2.5 for a complete presentation of the EU design problem concepts, which would be recruited to the formulation of EU-conceived engineering principles. (C16) (C17) (F2)

Thus, the EU Conception of HCI Engineering principles assumes the possibility of a codified, general, and testable formulation of HCI Engineering discipline knowledge. The latter might be prescriptively applied to designing humans and computers interacting to perform work effectively. Such principles would be unequivocally formal and operational. Indeed, their operational capability would derive directly from the formality of their concepts. (C13) EU HCI Engineering concepts would be generalisable over classes of design problem solutions. Since the principles are operational, their application (expressed as design solutions) would necessarily be specifiable. They would also be testable and so their reliability and generality could also be specified. (C14)

In this way would the principles, expressed in terms of the EU Conception of Engineering design knowledge, be validated. Such validated Engineering design principles would offer a better guarantee (that is, more assurance) of solving the HCI general design problem. Better, for example, than the experiential trial-and-error knowledge of craft HCI (C4) (C5) (C6) or the guidelines/heuristics of Applied Science HCI (C7) (C8) (C9) (C10) (C11) (C15) (F3) HCI Engineering principles, following the EU Conception of Engineering design knowledge, can be substantive or methodological. Methodological principles prescribe the methods for solving the general HCI design problem. Methodological principles would assure complete specification of all necessary levels of design solution representation. Substantive principles prescribe the features and properties of HCI systems that constitute solutions to the EU HCI Engineering design problem. (C20)

The extent, to which HCI engineering principles might be realisable in practice, in the longer term, remains to be seen and demonstrated. In the meantime, craft knowledge in whatever form – models, methods, heuristics, guidelines, experience, procedures etc cannot be other than be recruited to solve HCI design problems both by researchers and practitioners (C22) (F4)

Key concepts are shown in bold on their first appearance only.

Footnotes and Citations

Footnotes

 (F1) In the shorter term, to solve HCI design problems, either for research or for practice, any type of knowledge might be used.
(F2) Or indeed to other types of Engineering knowledge, for example, models and methods, intended to support the diagnosis of design problems and the prescription of their design solutions.
(F3) Craft HCI would also include craft engineering HCI – see also (F1) and (F2).
(F4) See also (F1), (F2) and (F3).
Citations
Long and Dowell (1989)

(C1) ‘The framework expresses the essential characteristics of the HCI discipline, and can be summarised as: ‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’. (Page 9, Lines 16-19)

(C2) ‘ Some would claim HCI theory as explanatory laws, others as design principles. Some would claim HCI theory as directly supporting HCI practice, others as indirectly providing support. Some would claim HCI theory as effectively supporting HCI practice, whilst others may claim such support as non-existent.’ (Page 10, Lines 12-17)

(C3) ‘All definitions of disciplines make reference to discipline knowledge as the product of research or more generally of a field of study. Knowledge can be public (ultimately formal) or private (ultimately experiential). It may assume a number of forms; for example, it may be tacit, formal, experiential, codified – as in theories, laws and principles etc. It may also be maintained in a number of ways; for example, it may be expressed in journals, or learning systems, or it may only be embodied in procedures and tools. All disciplines would appear to have knowledge as a component (for example, scientific discipline knowledge, engineering discipline knowledge, medical discipline knowledge, etc). Knowledge, therefore, is a necessary characteristic of a discipline.’ (Page 11, Lines 30-38)

(C4) ‘Craft disciplines solve the general problems they address by practices of implementation and evaluation. Their practices are supported by knowledge typically in the form of heuristics; heuristics are implicit (as in the procedures of good practice) and informal (as in the advice provided by one craftsperson to another). Craft knowledge is acquired by practice and example, and so is experiential; it is neither explicit nor formal.’ (Page 16, Lines 4-8)

(C5) ‘…….. the (public) knowledge possessed by HCI as a craft discipline is not operational. That is to say, because it is either implicit or informal, it cannot be directly applied by those who are not associated with the generation of the heuristics or exposed to their use. If the heuristics are implicit in practice, they can be applied by others only by means of example practice. If the heuristics are informal, they can be applied only with the help of guidance from a successful practitioner (or by additional, but unvalidated, reasoning by the user).’ (Page 18, Lines 28-33)

(C6) ‘If craft knowledge is not testable, then neither is it likely to be generalisable ……To be clear, if being operational demands that (public) discipline knowledge can be directly applied by others than those who generated the knowledge, then being general demands that the knowledge be guaranteed to be appropriate in instances other than those in which it was generated. Yet, the knowledge possessed by HCI as a craft discipline applies only to those problems already addressed by its practice, that is, in the instances, in which it was generated.’ (Page 19, Lines 11 and 15-20)

(C7) ‘The discipline of science uses scientific knowledge (in the form of theories, models, laws, truth propositions, hypotheses, etc.) to support the scientific practice ……..Scientific knowledge is explicit and formal, operational, testable and generalisable. It is therefore refutable (if not proveable, Popper [1959])’. (Page 20, Lines 2-3 and 7-9)

(C8) ‘An applied science discipline is one which recruits scientific knowledge to the practice of solving its general problem – a design problem.’ (Page 20, Lines 16 and 17)

(C9) ‘ First, its science knowledge cannot be applied directly, not – as in the case of craft knowledge – because it is implicit or informal, but because the knowledge is not prescriptive; it is only explanatory and predictive. Its scope is not that of the general problem of design.’ (Page 23, Lines 20-23)

(C10) ‘Second, the guidelines based on the science knowledge, which are not predictive but prescriptive, are not defined, operationalised, tested or generalised with respect to desired effective performance. Their selection and application in any system would be a matter of heuristics (and so paradoxically of good practice).’ (Page 23, Lines 25-28)

(C11) ‘Science knowledge is explicit and formal, and so supports reasoning about the derivation of guidelines, their solution and application (although one might have to be a discipline specialist so to do).’ (Page 23, Lines 36-38)

(C12) ‘The discipline of engineering may characteristically solve its general problem (of design) by the specification of designs before their implementation. It is able to do so because of the prescriptive nature of its discipline knowledge supporting those practices – knowledge formulated as engineering principles.’ (Page 24, Lines 11-14)

(C13) ‘The conception of HCI engineering principles assumes the possibility of a codified, general and testable formulation of HCI discipline knowledge which might be prescriptively applied to designing humans and computers interacting to perform work effectively. Such principles would be unequivocally formal and operational. Indeed their operational capability would derive directly from their formality, including the formality of their concepts.’ (Page 24, Lines 28-31)

(C14) ‘First, HCI engineering principles would be a generaliseable knowledge. …….. Second, engineering HCI principles would be operational, and so their application would be specifiable…….. Because they would be operational, they would be testable and their reliability and generality could be specified.’ (Page 27, Lines 20-22 and 36-28)

(C15) ‘ Although all three conceptions address the general problem of HCI, they differ concerning the knowledge recruited to solve the problem. Craft recruits heuristics; applied science recruits theories expressed as guidelines; and engineering recruits principles.’ (Page 28, Lines 22-24)

Dowell and Long (1989)

(C16) ‘The paper ….. examines the potential for Human Factors to formulate engineering principles. ……… A conception would provide the set of related concepts which both expressed the general design problem more formally, and which might be embodied in engineering principles.’ (Page 1513, Lines 9 and 10)

(C17) ‘However, a pre-requisite for the formulation of any engineering principle is a conception. A conception is a unitary (and consensus) view of a general design problem; its power lies in the coherence and completeness of its definition of the concepts, which can express that problem. Engineering principles are articulated in terms of those concepts.’ (Page 1514, Lines 23-27)

(C18) ‘Most definitions of disciplines assume three primary characteristics: a general problem; practices, providing solutions to that problem; and knowledge, supporting those practices.’ (Page 1514, Lines 43-45)

(C19) ‘Generally, the established engineering disciplines possess formal knowledge: a corpus of operationalised, tested, and generalised principles. Those principles are prescriptive, enabling the complete specification of design solutions before those designs are implemented (see Dowell and Long, 1988b). This theme of prescription in design is central to the thesis offered here.’ (Page 1520, Lines 1-5)

(C20) ‘Engineering principles can be substantive or methodological. Methodological Principles prescribe the methods for solving a general design problem optimally. ….. Methodological principles would assure each lower level of specification as being a complete representation of an immediately higher level. Substantive Principles prescribe the features and properties of artefacts, or systems that will constitute an optimal solution to a general design problem. (Page 1520, Lines 6-15)

(C21) ‘Such a conception ….. enables the formulation of engineering principles which embody and instantiate those concepts. ( Page 1520, Line 46 and Page 1521, Line 1)

(C22) ‘The extent to which HF engineering principles might be realiseable in practice remains to be seen. It is not supposed that the development of effective systems will never require craft skills in some form, and engineering principles are not seen to be incompatible with craft knowledge, particularly with respect to their instantiation. At a minimum, engineering principles might be expected to augment the craft knowledge of HF professionals. Yet the great potential of HF engineering principles for the effectiveness of the discipline demands serious consideration.’ (Page 1533, Lines 24-29)

 

4.4 Long and Dowell (1989) – HCI Engineering Practice – Short version 150 150 John

4.4 Long and Dowell (1989) – HCI Engineering Practice – Short version

John Long and John Dowell

…….. First, consideration of disciplines in general suggests their complete definition can be summarised as: ‘knowledge, practices and a general problem having a particular scope, where knowledge supports practices seeking solutions to the general problem’. Second, the scope of the general problem of HCI is defined by reference to humans, computers, and the work they perform. Third, by intersecting these two definitions, a framework is proposed within which different conceptions of the HCI discipline may be established, ordered, and related. The framework expresses the essential characteristics of the HCI discipline, and can be summarised as: ‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’. ……..

Published in: People and Computers V. Sutcliffe A. and Macaulay L. (ed.s). Cambridge University Press, Cambridge. Proceedings of the Fifth Conference of the BCS HCI SIG, Nottingham 5-8 September 1989.

Contents

1. Introduction

1.1. Alternative Interpretations of the Theme

1.2. Alternative Conceptions of HCI: the Requirement for a Framework

1.3. Aims

2. A Framework for Conceptions of the HCI Discipline

2.1. On the Nature of Disciplines

2.2. Of Humans Interacting with Computers

2.3. The Framework for Conceptions of the HCI Discipline

3. Three Conceptions of the Discipline of HCI

3.1. Conception of HCI as a Craft Discipline

3.2. Conception of HCI as an Applied Science Discipline

3.3. Conception of HCI as an Engineering Discipline

4. Summary and Conclusions

1. Introduction

 

1.1. Alternative Interpretations of the Theme

 

 

1.2. Alternative Conceptions of HCI: the Requirement for a Framework

 

 

1.3. Aims

2. A Framework for Conceptions of the HCI Discipline

2.1. On the Nature of Disciplines

Most definitions assume three primary characteristics of disciplines: knowledge; practice; and a general problem.

All definitions of disciplines make reference to discipline knowledge as the product of research or more generally of a field of study. …….. Knowledge, therefore, is a necessary characteristic of a discipline.

Consideration of different disciplines suggests that practice is also a necessary characteristic of a discipline. Further, a discipline’s knowledge is used by its practices to solve a general (discipline) problem. For example, the discipline of science includes the scientific practice addressing the general (scientific) problem of explanation and prediction. The discipline of engineering includes the engineering practice addressing the general (engineering) problem of design. The discipline of medicine includes the medical practice addressing the general (medical) problem of supporting health. Practice, therefore, and the general (discipline) problem which it uses knowledge to solve, are also necessary characteristics of a discipline.

 

 

…….. Taken together, the three necessary characteristics of a discipline (and the two basic properties additionally concluded), suggest the definition of a discipline as: ‘the use of knowledge to support practices seeking solutions to a general problem having a particular scope’. It is represented schematically in Figure 1. This definition will be used subsequently to express HCI.

2.2. Of Humans Interacting with Computers

2.3. The Framework for Conceptions of the HCI Discipline

…….. Given the definition of its scope (above), and the preceding definition of disciplines, the general problem addressed by the discipline of HCI is asserted as: ‘the design of humans and computers interacting to perform work effectively’. It is a general (discipline) problem of design : its ultimate product is designs. The practices of the HCI discipline seek solutions to this general problem, for example: in the construction of computer hardware and software; in the selection and training of humans to use computers; in aspects of the management of work, etc. HCI discipline knowledge supports the practices that provide such solutions.

 

…….. Hence, we may express a framework for conceptions of the discipline of HCI as:

‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI of designing humans and computers interacting to perform work effectively. HCI knowledge is constituted of HF knowledge and SE knowledge, respectively supporting HF practices and SE practices. Those practices respectively address the HF general problem of the design of humans interacting with computers, and the SE general problem of the design of computers interacting with humans’. The framework is represented schematically in Figure 3.

 

 

3. Three Conceptions of the Discipline of HCI

 

3.1. Conception of HCI as a Craft Discipline

Craft disciplines solve the general problems they address by practices of implementation and evaluation. Their practices are supported by knowledge typically in the form of heuristics; heuristics are implicit (as in the procedures of good practice) and informal (as in the advice provided by one craftsperson to another). Craft knowledge is acquired by practice and example, and so is experiential; it is neither explicit nor formal. Conception of HCI as a craft discipline is represented schematically in Figure 4.

 

HCI craft knowledge, supporting practice, is maintained by practice itself. For example, in the case of Videotex shopping, users often fail to cite on the order form the reference number of the goods they wish to purchase. A useful design heuristic is to try prompting users with the relevant information, for example, by reminding them on the screen displaying the goods that the associated reference number is required for ordering and should be noted. An alternative heuristic is to try re-labelling the reference number of the goods, for example to ‘ordering’ rather than reference number. Heuristics such as these are formulated and tried out on new implementations and are retained if associated with successful interactions.

 

In summary, the design of Ded by Bornat and Thimbleby illustrates the critical features of HCI as a craft discipline. They addressed the specific form of the general problem (general because their colleague suggested part of the solution – one ‘mode’ – and because their heuristics were made available to others practising the craft discipline). Their practices involved the iterative implementation and evaluation of the computer interacting with the human, and of the human interacting with the computer. They were supported by craft discipline heuristics – for example: ‘simple operations should be simple, and the complex possible’. Such craft knowledge was either implicit or informal; the concepts of ‘simple’ and ‘complex’ remaining undefined, together with their associated operations (the only definitions being those implicit in Ded and in the expertise of Bornat and Thimbleby, or informal in their report). And finally, the heuristics were generated for a purpose, tried out for their adequacy (in the case of Ded) and then retained or discarded (for further application to Ded). This too is characteristic of a craft discipline. Accepting that Ded met its requirements for both functionality (enter text, review text, etc.) and for usability (use straight away, etc) – as claimed by Bornat and Thimbleby – it can be accepted as an example of good HCI craft practice.

 

3.2. Conception of HCI as an Applied Science Discipline

An applied science discipline is one which recruits scientific knowledge to the practice of solving its general problem – a design problem. HCI as an applied science discipline uses scientific knowledge as an aid to addressing the general problem of designing humans and computers interacting to perform work effectively. HCI as an applied science is represented schematically in Figure 5.

3.3. Conception of HCI as an Engineering Discipline

The discipline of engineering may characteristically solve its general problem (of design) by the specification of designs before their implementation. It is able to do so because of the prescriptive nature of its discipline knowledge supporting those practices – knowledge formulated as engineering principles. Further, its practices are characterised by their aim of ‘design for performance’. Engineering principles may enable designs to be prescriptively specified for artefacts, or systems which when implemented, demonstrate a prescribed and assured performance. And further, engineering disciplines may solve their general problem by exploiting a decompositional approach to design. Designs specified at a general level of description may be systematically decomposed until their specification is possible at a level of description of their complete implementation. Engineering principles may assure each level of specification as a representation of the previous level.

 

 

 

The concepts described enable the expression of the general problem addressed by an engineering discipline of HCI as: specify then implement user behaviour {U} and computer behaviour {C}, such that {U} interacting with {C} constitutes an interactive worksystem exhibiting desired performance (PD). It is implicit in this expression that the specification of behaviour supposes and enables specification of the structure supporting that behaviour. HCI engineering principles are conceptualised as supporting the practices of an engineering HCI discipline in specifying implementable designs for the interacting behaviours of both the user and computer that would achieve PD.

 

 

Given the independence of their principles, the engineering disciplines of SE and HF might each pursue their own practices, having commensurate and integrated roles in the development of interactive worksystems. Whilst SE specified and implemented the interacting behaviours of computers, HF would specify and implement the interacting behaviours of users. Together, the practices of SE and HF would aim to produce interactive worksystems which achieved PD.

 

 

4. Summary and Conclusions

The proposal made here is that the general problem of HCI is the design of humans and computers interacting to perform work effectively. The qualification of the general problem as ‘design’, and the addition to the scope of that problem of ‘…. to perform work effectively’, has important consequences for the different conceptions of HCI (see Section 3). For example, since design is not the general problem of science, scientific knowledge (for example, psychology or computer science) cannot be recruited directly to the practice of solving the general problem of design (see Barnard, Grudin & Maclean [1989]). Further, certain attempts to develop complete engineering principles for HCI fail to qualify as such, because they make no reference to ‘…. to perform work effectively’ (Dix & Harrison [1987]; Thimbleby [1984]).

Finally, generalisation of the Conference theme has identified two conceptions of HCI as a discipline as alternatives to the applied science conception implied by the theme. The other two conceptions are HCI as a craft discipline and HCI as an engineering discipline. Although all three conceptions address the general problem of HCI, they differ concerning the knowledge recruited to solve the problem. Craft recruits heuristics; applied science recruits theories expressed as guidelines; and engineering recruits principles. They also differ in the practice they espouse to solve the general problem. Craft typically implements, evaluates and iterates (Bornat & Thimbleby [1989]); applied science typically selects guidelines to inform implementation, evaluation and iteration (although guidelines may also be generated on the basis of extant knowledge, e.g. – Hammond & Allinson [1988]); and engineering typically would specify and then implement (Dowell & Long [1988]).

The different types of knowledge and the different types of practice have important consequences for the effectiveness of any discipline of HCI. Heuristics are easy to generate, but offer no guarantee that the design solution will exhibit the properties of performance desired. Scientific theories are difficult and costly to generate, and the guidelines derived from them (like heuristics) offer no final guarantee concerning performance. Engineering principles would offer guarantees, but are predicted to be difficult, costly and slow to develop.

 

Lastly, Carroll and Campbell’s claim (Carroll & Campbell [1988]) that HCI research has been more successful at developing methodology than theory can be explicated by the need for guidelines to express psychological knowledge and the need to validate those guidelines formally, and the absence of engineering principles, plus the importation of psychology research methods into HCI and the simulation of good (craft) practice. The methodologies, however, are not methodological principles which guarantee the solution of the design problem (Dowell & Long [manuscript submitted for publication]), but procedures to be tailored anew in the manner of a craft discipline. Thus, relating the conceptions of HCI as a set of possible disciplines provides insight into whether HCI research has been more successful at developing methodologies than theories.

References

J R Anderson [1983], The Architecture of Cognition, Harvard

University, Cambridge MA.

P Barnard, J Grudin & A Maclean [1989], “Developing a Science Base for the Naming of Computer Commands”, in Cognitive Ergonomics and Human Computer Interaction, J B Long & A D Whitefield, eds., Cambridge University Press, Cambridge.

R Bornat & H Thimbleby [1989], “The Life and Times of Ded, Text Display editor”, in Cognitive Ergonomics and Human Computer Interaction, J B Long & A D Whitefield, eds., Cambridge University Press, Cambridge.

P Buckley [1989], “Expressing Research Findings to have a Practical Influence on Design”, inCognitive Ergonomics and Human Computer Interaction, J B Long & A D Whitefield, eds., Cambridge University Press, Cambridge.

J M Carroll & R L Campbell [1988], “Artifacts as Psychological Theories: the Case of Human Computer Interaction”, IBM research report, RC 13454(60225) 1/26/88, T.J. Watson Research Division Center, Yorktown Heights, NY. 10598.

R N Charette [1986], Software Engineering Environments, Intertexts Publishers/McGraw Hill, New York.

F I M Craik & R S Lockhart [1972], “Levels of Processing: A Framework for Memory Research”,Journal of Verbal Learning and Verbal Behaviour, 11, 671-684.

A J Dix & M D Harrison [1987], “Formalising Models of Interaction in the Design of a Display Editor”, in Human-Computer Interaction – INTERACT’87, H J Bullinger & B Shackel, (ed.s), North-Holland, Amsterdam, 409-414.

J Dowell & J B Long [1988], “Human-Computer Interaction Engineering”, in Designing End-User Interfaces, N Heaton & M Sinclair, eds., Pergamon Infotech, Oxford.

J Dowell & J B Long, “Towards a Conception for an Engineering Discipline of Human Factors”, (manuscript submitted for publication).

P Gilligan & J B Long [1984], “Videotext Technology: an Overview with Special Reference to Transaction Processing as an Interactive Service”, Behaviour and Information Technology, 3, 41-47.

N Hammond & L Allinson [1988], “Development and Evaluation of a CAL System for Non-Formal Domains: the Hitchhiker`s Guide to Cognition”, Computer Education, 12, 215-220.

N Hammond [1987], “Principles from the Psychology of Skill Acquisition”, in Applying Cognitive Psychology to User-Interface Design, M Gardiner & B Christie, eds., John Wiley and Sons, Chichester.

I Kant [1781], The Critique of Pure Reason, Second Edition, translated by Max Muller, Macmillan, London.

D Kapur & M Srivas [1988], “Computability and Implementability: Issues in Abstract Data Types,”Science of Computer Programming, Vol. 10.

T K Landauer [1987a], “Relations Between Cognitive Psychology and Computer System Design”, inInterfacing Thought: Cognitive Aspects of Human-Computer Interaction, J M Carroll, (ed.), MIT Press, Cambridge MA. 23

T K Landauer [1987b], “Psychology as Mother of Invention”, CHI SI. ACM-0-89791-213-6/84/0004/0333

J B Long [1989], “Cognitive Ergonomics and Human Computer Interaction: an Introduction”, inCognitive Ergonomics and Human Computer Interaction, J B Long & A D Whitefield, eds., Cambridge University Press, Cambridge.

J Long [1987], “Cognitive Ergonomics and Human Computer Interaction”, in Psychology at Work, P Warr, eds., Penguin, England.

J M Mandler [1979], “Categorical and Schematic Organisation in Memory”, in Memory Organisation and Structure, C R Puff, ed., Academic Press, New York.

H H Pattee [1973], Hierarchy Theory: the Challenge of Complex Systems, Braziller, New York.

K R Popper [1959], The Logic of Scientific Discovery, Hutchinson, London.

D Scott [1976], “Logic and Programming”, Communications of ACM, 20, 634-641.

H Thimbleby [1984], “Generative User Engineering Principles for User Interface Design”, in Proceedings of the First IFIP Conference on Human-Computer Interaction, Human-Computer Interaction – INTERACT’84. Vol.2, B Shackel, ed., Elsevier Science, Amsterdam, 102-107.

E Tulving [1972], “Episodic and Semantic Memory”, in Organisation of Memory, E Tulving & N Donaldson, eds., Academic Press, New York.

P Walsh, K Y Lim, J B Long & M K Carver [1988], “Integrating Human Factors with System Development”, in Designing End-User Interfaces, N Heaton & M Sinclair, eds., Pergamon Infotech, Oxford.

Acknowledgement. This paper has greatly benefited from discussion with others and from their criticisms. In particular, we would like to thank: Andy Whitefield and Andrew Life, colleagues at the Ergonomics Unit, University College London; Charles Brennan of Cambridge University, and Michael Harrison of York University; and also those who attended a seminar presentation of many of these ideas at the MRC Applied Psychology Unit, Cambridge. The views expressed in the paper, however, are those of the authors.

 

Footnotes:

  1. Notwithstanding the so-called ‘hierarchy theory ‘ which assumes a phenomenon to occur at a particular level of complexity and to subsume others at a lower level (eg, Pattee, 1973).
2.3 EU Conception of HCI Engineering Design Problem: a Summary 150 150 John

2.3 EU Conception of HCI Engineering Design Problem: a Summary

The EU Conception of the HCI Engineering general design problem is expressed informally as: ‘to design human interactions with computers for effective working.’ (C1) The EU Conception is a unitary view of a general design problem; its power lies in the coherence and completeness of its definition of the concepts, which can express that problem. Engineering knowledge, in the form of principles, would be expressed in terms of those same concepts). (C2) (F1)

The EU Conception of the HCI Engineering design problem presupposes an associated HCI Discipline having three primary characteristics: a general problem; practices providing solutions to that problem; and knowledge supporting those practices. (C3) The EU conception of the design problem belongs to the class of general design problem and includes the design of artefacts (for example, bridges) and the design of states of the world (for example, public administration). (C4)

The EU Conception has the necessary property of a scope, delimiting the province of concern of the associated discipline of HCI Engineering. (C5) The scope includes: humans, both as individuals, groups and as social organisations. It also includes computers, both as programmable machines, stand-alone and networked, and as functionally embedded devices within machines. Its scope also includes: work, both as concerns individuals and the organisations in which it occurs.

The EU Conception categorises HCI Engineering design problems as ‘hard’ or ‘soft’. Hard and soft problems are distinguished by the need for engineering design solutions, as specified by HCI design practices, to be determinate. The design practices vary in the completeness of their specification before implementation. ‘Specify then implement’ design practices (based on formal design knowledge, such as principles) implicate more complete specification. ‘Implement and test’ design practices (based on informal design knowledge, such as guide-lines) implicate less complete specification. (C8) (F2) Taken together, the dimension of problem hardness, characterising HCI general design problems and the dimension of specification completeness, characterising HCI practices, constitute a classification space for approaches to HCI engineering, of which EU engineering is one. (C9)

The EU Conception of the HCI Engineering design problem asserts a fundamental distinction between behavioural systems, which perform work and a world in which work originates, is performed and has its consequences. (C13)  Effectiveness derives from the relationship of an interactive worksystem with its domain of application, assimilating both the work performed by the worksystem and the costs it incurs. (C14) The concern of the associated HCI Engineering discipline is to design the interactive worksystem for performance. (C15). The interactive worksystem is constituted of two separate, but interacting sub-systems, that is, a system of human behaviours, interacting with a system of computer behaviours. (C16)

According to the EU Conception, the general design problem of HCI Engineering is to produce implementable designs of human behaviours, which, interacting with computer behaviours, are constituted within a worksystem, whose performance conforms with some desired performance. (C17) The interactions take place in a world in which work originates and has its consequences. (C18) This work arises at the intersection of organisations and computer technology and is expressed in terms of objects. The latter may be both abstract, as well as physical and are characterised by their attributes. (C19) Abstract attributes are of information and knowledge. Physical attributes are of energy and matter. The different attributes of an object emerge at different levels within a hierarchy of levels of complexity. (C20) Attributes of objects are related in two ways – at different levels of complexity and within those levels. (C21) Attributes have states, which change or are changed over time. Thus, objects exhibit an affordance for transformation, expressed by their attributes’ potential for change of state. (C22) A domain of application is conceptualised as: ‘a class of affordance of a class of objects’. (C23)

Following the EU Conception, organisations are conceived as having domains as their operational scope and requiring the realisation of the affordance of objects. It is a requirement satisfied by work. (C24) Organisations express their requirement for the transformation of objects by formulating goals. A product goal specifies a required transformation, realised by means of the affordance of objects. (C25) The concept of Quality describes the variance of an actual transform with that specified by a product goal. An EU HCI Engineering problem exists, when actual Quality is not equal to desired Quality. (C26) Conception of the domain is of objects, characterised by their attributes and exhibiting an affordance, arising from the potential changes of state of those attributes. (C27)

The EU Conception identifies interactive worksystems, consisting of human and computer behaviours together performing work. (C28) Humans formulate goals and their corresponding behaviors are said to be intentional (or purposeful). Computers are designed to achieve goals and their corresponding behaviours are said to be intended (or purposive). An interactive worksystem is a behavioural system distinguished by a boundary, enclosing all human and computer behaviours, whose purpose is to achieve a common goal. (C29) Worksystems achieve goals by the transformation of objects, that is, by producing state changes in the abstract and physical attributes of those objects. (C30) The behaviors of the human and computer are conceptualised as behavioral sub-systems of the worksystem – sub-systems, which interact. (C31) Behavior may be loosely understood as ‘what the user does’ in contrast with ‘what is done’, that is, attribute state changes of the domain. More precisely, the user is conceptualised as a system of distinct, but related, human behaviours identifiable as the sequence of states of a person interacting with a computer to perform work and corresponding with an intentional transformation of objects in a domain. Although possible at many levels, the user must be at least conceptualised at a level commensurate with the level of description of the transformation of objects in the domain. (C32)

In the EU Conception, worksystem behaviours are both physical and abstract. (C33) The latter process information, concerning object-attribute-state changes in the domain, whose transformation is required by goals. Physical behaviours are related to, and express, abstract behaviors. In addition, the user is conceptualised as having cognitive (knowing), conative (trying) and affective (experiencing) aspects. (C34) The user may include both on-line and off-line human behaviours. On-line behaviours are associated with the computer’s representation of the domain; 0ff-line behaviours are associated with non-computer representations of the domain or the latter itself. Conceptualisation of the user as a system of human behaviours is extended to the structures enabling behaviours. (C37) There is a one-to-many mapping between a human’s structures and the behaviours they might enable. The structures may support many different behaviours. Physical human structures are neural, biomechanical and physiological. Mental structures consist of representations and processes, which transform them, (C38)

Work performed by interactive worksystems incurs ‘resource costs’. (C39) Certain costs are associated with the user and distinguished as structural human costs and behavioural human costs. Structural human (‘set-up’ or learning) costs are incurred in the development of human skills and knowledge, as in training and education. Such costs are both mental and physical. (C40) Behavioral human costs are incurred, when the user recruits human structures to perform work. Such costs are both mental and physical. (C41)

In the EU Conception of the HCI Engineering design problem, effectiveness derives from the relationship of an interactive worksystem with its domain. Effectiveness assimilates both the quality of the work performed by the worksystem and the costs incurred by it. (C42) Quality and costs are the primary constituents of the concept of performance through which effectiveness is expressed. A desired performance of an interactive worksystem is conceptualised such that desired performance might be either absolute or relative, as in a comparative performance to be matched or improved upon. (C43) This EU Engineering Conception of performance has the following implications.

First, the quality of the transform, expressing performance, is distinguished from the effectiveness of the worksystem, which produces it. (C44) Second, optimal human behaviours are conceived as those incurring the minimum resource costs in producing a given transform. (C45) Third, common measures of ‘human performance’ – such as ‘time and errors’- are related to performance, as conceived here. (46) Errors may increase resource costs and/or reduce quality. The time taken by human behaviours may (very generally) be associated with increased user costs. Fourth, structural and behavioural human costs may be traded off in performance. (C47) Finally, fifth, user and computer costs may also be traded off. (C48) This concludes a summary of the EU Conception of the HCI Engineering design problem.

The Conception is a unitary view of the necessary concepts and their relations to express that design problem and so, any design solution. In addition, it is a pre-requisite for developing formal HCI Engineering design knowledge as principles to support ‘specify then implement’ HCI engineering design practices. A complete version of the Conception can be found in the short and full versions of the Dowell and Long (1989) original paper – see 2.4 and 2.5.

Key concepts are shown in bold on their first appearance only.

1.1 General Conception of HCI Discipline 150 150 John

1.1 General Conception of HCI Discipline

The General Conception of the HCI Discipline  is generalised from the General Conception of the HCI Engineering Discipline . The General Conception comprises HCI knowledge, which  takes a variety of forms , distinguishing the interactive system of people  and computers, what it does and how well it does it.  The knowledge supports HCI practices of design and implementation of people using  computers to do something as wanted. This Conception is general  to any approach to HCI.

 

Key Concepts, Footnotes and Citations

The General Conception (F1) of the HCI Discipline (C1) is generalised from the General Conception of the HCI Engineering Discipline (1.2). The General Conception comprises HCI knowledge, which  takes a variety of forms (F2), distinguishing the interactive system of people  and computers, what it does and how well it does it. (C2) The knowledge supports HCI practices of design (F3) and implementation of people using  computers to do something as wanted. (C3) This Conception is general  to any approach to HCI.

Key concepts are shown in bold on their first appearance only.

Footnotes

(F1) ‘Conception’ is preferred here, as it clearly implies a set of linked concepts, which is what a conception is. However, within HCI more generally , ‘Framework’ would do as well.  Some might even prefer ‘Model’ or most generally ‘Approach’.

(F2) Such forms of knowledge include: guidelines; models; methods; heuristics etc.

(F3) Design here includes evaluation.

Citations

 Long and Dowell (1989)

(C1) ‘The framework expresses the essential characteristics of the HCI discipline and can be summarised as ‘ the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’. (Page 9, Abstract, Lines 11-14)

(C2) ‘Second, the scope of the general problem of HCI is defined by reference to humans, computers, and the work they perform.’ (Page 9, Abstract, Lines 7-9)

(C3) ‘Most definitions assume three primary characteristics of disciplines: knowledge; practice; and a general problem.’ (Page 11, Lines 26 and 27)

1.3 HCI/E Conception of HCI Engineering Discipline: a Summary 150 150 John

1.3 HCI/E Conception of HCI Engineering Discipline: a Summary

The HCI/E Conception of HCI as an Engineering discipline is a summary of the complete version (1.4 and 1.5).

The Conception comprises: HCI Engineering Knowledge as Principles, which distinguish the interactive worksystem, of user and computer, the work it performs and the effectiveness of that performance in terms of task quality and system resource costs. These Principles support HCI Engineering Practices seeking to diagnose design problems and to prescribe design solutions to those problems. Design here is characterised as ‘specify then implement’ designs of users interacting with computers (the interactive worksystem) to perform effective work in some domain of application.

Key concepts, Footnotes and Citations

The HCI/E Conception of the HCI Engineering Discipline comprises (C2): HCI Knowledge as Principles (F1), which distinguish the interactive worksystem, of user and computer, the work it performs and the effectiveness of that performance in terms of task quality and system resource costs. (C3) These Principles support HCI Practices seeking to diagnose design problems and to prescribe design solutions to those problems. (F2) (C1) Design here is characterised as ‘specify then implement’ designs of users interacting with computers (the interactive worksystem) to perform effective work in some domain of application. (F3) (C4)

Key concepts are shown in bold on their first appearance only.

 Footnotes

 (F1) No such Principles exist in the current research and practice of HCI. The HCI/E Conception and frameworks are intended to form the basis, on which such Principles might be constructed in the longer term. A start, however, has been made (Stork (1999) and Cummaford (2007). In the meantime, HCI/E research and practice recruits whatever HCI knowledge is available at present to solve design problems.

(F2) According to the HCI/E Conception, design problems have to be diagnosed (and specified) before they can be solved (and implemented).

(F3) The current absence of HCI Engineering Design Principles, requiring the use of different types of HCI knowledge – see (F1) above –   also requires, in the meantime,  they support different types of practice, for example, ‘trial-and- error; ‘specify and implement’; ‘prototype and test’ etc.

Citations

 Long and Dowell (1989)

(C1) ‘The  (discipline) framework expresses the essential characteristics of the HCI discipline, and can be summarised as: ‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’.’ (Page 9, Lines 16-19).

(C2) ‘Two prerequisites of a framework for conceptions of the HCI discipline are assumed. The first is a definition of disciplines appropriate for the expression of HCI. The second is a definition of the province of concern of the HCI discipline which, whilst broad enough to include all disparate aspects, enables the discipline’s boundaries to be identified.’ (Page 11, Lines 18-21).

(C4) ‘The discipline of engineering may characteristically solve its general problem (of design) by the specification of designs before their implementation. It is able to do so because of the prescriptive nature of its discipline knowledge supporting those practices – knowledge formulated as engineering principles.’ (Page 24, Lines 11-14)

Dowell and Long (1989)

(C3) ‘Taken together, the dimension of problem hardness, characterising general design problems, and the dimension of specification completeness, characterising discipline practices, constitute a classification space for design disciplines……..’ (Page 1518, Lines 20-22)

 

1.2 General Conception of HCI Engineering Discipline 150 150 John

1.2 General Conception of HCI Engineering Discipline

The General Conception of the HCI Engineering Discipline is generalised from the HCI/E Conception . The General Conception comprises HCI Engineering Knowledge, which distinguishes the interactive system of user and computer, the tasks it performs as desired and the goodness of that performance in terms of specific criteria.  The knowledge supports Practices, seeking to solve design problems.  Design here includes specification, followed by implementation and evaluation of users interacting with computers (the interactive system), to perform tasks as desired in some domain of application.

Key Concepts, Footnotes and Citations

The General Conception of the HCI Engineering Discipline is generalised from the HCI/E Conception (1.3). The General Conception comprises HCI Engineering Knowledge, which distinguishes the interactive system of user and computer, the tasks (F1) it performs as desired and the goodness of that performance in terms of specific criteria. (F2) (C1)  The knowledge supports HCI Engineering Practices, seeking to solve design problems. (C2) Design here includes specification, followed by implementation, of users interacting with computers ( the interactive system), to perform tasks as desired in some domain of application. (C3)

Key concepts are shown in bold on their first appearance only.

Footnotes

(F1) Task here is to be interpreted widely, as anything a user can do with a computer, either desired or undesired, well or badly.

(F2 ) Criteria, here, may include: time; errors; completeness etc.

Citations

Long and Dowell (1989)

(C1) ‘It (the Conception) dichotomises ‘interactive worksystems’ which perform work, and ‘domains of application’ in which work originates, is performed, and has its consequences’. (Page 24, Lines 39 and 40)

(C2) ‘The discipline of engineering includes the engineering practice addressing the general (engineering) problem of design.’  (Page 12, Lines 3-5)

(C3) ‘The discipline of engineering may characteristically solve its general problem (of design) by the specification of designs before their implementation.’ (Page 24, Lines 11-12).

 

1.6 Discipline; Engineering; and Human-Computer Interaction 150 150 John

1.6 Discipline; Engineering; and Human-Computer Interaction

1.6.1 Discipline

The general concept of a discipline (F1) comprises: discipline knowledge (C3); practices (C4); and a general problem (C5), having a particular scope.(F2) (C1) (C2) The knowledge supports practices, seeking solutions to the general discipline problem, expressed in terms of its particular scope. (C6) (C7)

Footnotes and Citations

Footnotes

(F1) A discipline here is to be distinguished from the community, which practises it.

(F2) The scope of a problem is the domain or range over which it operates.

Citations

Long and Dowell (1989)

(C1) ‘First, consideration of disciplines in general suggests their complete definition can be summarised as: ‘knowledge, practices and a general problem having a particular scope, where knowledge supports practices seeking solutions to the general problem’.’ (Page 9, Lines 9-14)

(C2) ‘Most definitions assume three primary characteristics of disciplines: knowledge; practice; and a general problem.’ (Page 11, Lines 27 and 28)

(C3) ‘All definitions of disciplines make reference to discipline knowledge as the product of research or more generally of a field of study……. Knowledge, therefore, is a necessary characteristic of a discipline.’ (Page 11, Lines 29 and 30)

(C4) ‘Consideration of different disciplines suggests that practice is also a necessary characteristic of a discipline.’ (Page 11, Line 38 and Page 12, Line 1)

(C5) ‘Further, a discipline’s knowledge is used by its practices to solve a general (discipline) problem……’ (Page 12, Lines 1 and 2)

(C6) ‘Clearly, disciplines are here being distinguished by the general (discipline) problem they address.’ (Page 12, Lines 8 and 9)

(C7) ‘Taken together, the three necessary characteristics of a discipline (and the two basic properties additionally concluded), suggest the definition of a discipline as: ‘the use of knowledge to support practices seeking solutions to a general problem having a particular scope’.’  (Page 12, Lines 26-32)

1.6.2 Engineering

The general concept of a discipline of Engineering (F1) comprises: engineering knowledge, as principles (F2) (C2); their application to practices, seeking the diagnosis of, and the solution to, the general engineering problem of the design of particular systems or artefacts. (C1) This concept holds for any engineering approach to a discipline of HCI.

Footnotes and Citations

Footnotes

(F1) Engineering here is to be contrasted, for example, with Science.

(F2) Although Principles are critical to engineering knowledge, in contrast to other disciplines, it comprises a wide range of different types of knowledge – models; methods; etc.

Citations

Long and Dowell (1989)

(C1)’The discipline of engineering includes the engineering practice addressing the general (engineering) problem of design.’  (Page 12, Lines 3-5)

(C2) ‘The discipline of engineering may characteristically solve its general problem (of design) by the specification of designs before their implementation. It is able to do so because of the prescriptive nature of its discipline knowledge supporting those practices – knowledge formulated as engineering principles.’ (Page 24, Lines 11-14)

 

1.6.3 Human-Computer Interaction

The general concept of a discipline of HCI (C2) comprises: HCI knowledge; its application to practices, seeking solution to the general HCI problem (C4) of design, having the particular scope of people using (F1) computers to do something (F2) as wanted. (F3) (C1) (C3)

Footnotes and Citations

Footnotes

(F1) ‘Using’ here contrasts with simply ‘interacting.

(F2) ‘Something’ here is intentionally very general. The contrast is, again, with simply ‘interacting’ – see (F1).

(F3) ‘As wanted’ by, for example, the user; the client; the users’ organisation; or indeed all of them (and more).

Citations

Long and Dowell (1989)

(C1) ‘The  (discipline) framework expresses the essential characteristics of the HCI discipline, and can be summarised as: ‘the use of HCI knowledge to support practices seeking solutions to the general problem of HCI’.’ (Page 9, Lines 16-19).

(C2) ‘HCI concerns humans and computers interacting to perform work.’ (Page 13, Line 1)

(C3) ‘Taken together, these implications suggest a definition of the scope of the general (discipline) problem of HCI. It is expressed, in summary, as ‘humans and computers interacting to perform work effectively’.’ ( Page 13, Lines 10-12). (C4) … the general problem addressed by the discipline of HCI is asserted as: ‘the design of humans and computers interacting to perform work effectively’.  (Page 13, lines 19-21).